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Abstract. A steady gravity-free two-dimensional potential flow separating a parent channel and an offtake channel
is studied by conformal mapping of a half-strip in the Zhukovskii domain onto a strip with a cut in the complex
potential domain. A parameter of the mapping and the equation of a free streamline are found by computer-algebra
routines.
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1. Introduction

Free-surface flows are thoroughly studied by the method of complex variables in many branches
of fluid mechanics, hydrology, and subsurface hydrology [1,2]. The isobaric condition along
free boundaries allows implementing the Zhukovskii function or hodograph. Mapping them
onto the corresponding domain in the complex potential plane through an auxiliary plane
reconstructs the flow pattern. Recent applications of conformal mappings to free-surface flows
are presented in [3–8]. Sinha and Odgaard [9] studied bifurcating channel flows, which occur
in practice (e.g.[10] pp. 512–516, [11], pp. 183–234). The complex potential domain used
in [9] for mapping is a strip. The errors of this approximation are discussed in [8] where the
hodograph method has been used. In this note, we derive a solution to the problem from [9]
assuming a strip with a cut in the complex-potential domain and calculate the free streamline
in a way different from [8].

2. Analysis

We consider the flow pattern from [9]. Figure 1a shows the physical planez = x + iy and
Figure 1b shows the Zhukovskii function planeQ = log(V2/V ) + iθ . We conserve all nota-
tions from [9]. In particular, we assume thatD is a separation point,i.e. the flow is balanced
in terms of [8]. The complex-potential (w = 8 + i9) domain used in [9, Figure 4] does not
correspond to the flow pattern with a separatrice DA in our Figure 1a and, hence, we modify
this domain into a strip with a cut (Figure 1c). Correspondingly, we modify the Equations
(24)–(25), (27)–(28) from [9]. We map conformally the half-strip of theQ-plane onto the
upper-half of the auxiliary planeλ = ξ + iν (Figure 1d) by:

Q = − iα

π
arcsinλ+ i(π − α/2), (1)
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Figure 1. Physical plane (a), Zhukovskii plane (b), complex potential plane (c), auxiliary half-plane (d).

This equation is analogous to Equation (21) from [9]. Obviously, atλ = ξ > 1 (1) yields:

log(V2/V ) = α

π
log(ξ +

√
ξ2− 1). (2)

From (2)

V2

V1
= (a +

√
a2 − 1)α/π , (3)

V2

V3
= (e +

√
e2− 1)α/π . (4)

We assume thatb1, b2, b3,V1,V2 are known. The downstream velocity in the parent channel
V3 and the asymptotic flow width in the offtake channelb∗2 have to be determined. From (3) a
is immediately expressed as:

a = p2+ 1

2p
, where p =

(
V2

V1

)π/α
. (5)

Conformal mapping of the complex potential plane ontoλ yields:

w = A
[

log(λ− 1)

(a + 1)(e + 1)
+ log(λ+ a)
(a + 1)(a − e) −

log(λ+ e)
(e + 1)(a − e)

]
. (6)
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Our mapping function (6) is just the same as for the case of flow without a free streamline ([9]
formula (15)). The four unknown valuese, A, V3, b∗2 are connected through the three jump
conditions at the pointsE, A, B as:

Aπ

(a + 1)(e − a) = 91 = b1V1, (7)

Aπ

(a + 1)(e + 1)
= 92 = b∗2V2, (8)

b1V1 = b∗2V2+ b3V3. (9)

To close the system we have to determineb∗2. For this purpose, we express thez-function as:

z(λ) = A

V2

∫ λ

−1

eQ(τ)dτ

(τ − 1)(τ + a)(τ + e) . (10)

From Equation (10) atλ = ξ , −1 ≤ ξ ≤ 1, the parametric equations for the free streamline
BC are

x(ξ) = A

V2

∫ ξ

−1

cos(α/π arcsinτ + α/2)dτ

(τ − 1)(τ + a)(τ + e) , (11)

y(ξ) = − A
V2

∫ ξ

−1

sin(α/π arcsinτ + α/2)dτ

(τ − 1)(τ + a)(τ + e) . (12)

From Equations (11)–(12)b∗2 = b2+x(1) sin α+y(1) cosα. We put this value, the value
of A expressed from Equation (7), andV3 expressed throughV2 and e from Equation (4) into
Equation (9). As a result we come to an equation fore:

V1

V2
= b2

b1
+ V1

V2

(e − a)(e + 1)

π
×

∫ 1

−1

sin(α/2− α/π arcsinτ)dτ

(τ − 1)(τ + a)(τ + e) + b3

b1(e +
√
e2− 1)

α/π
(13)

We solved this equation by standard methods [12]. We calculatedV3, b∗2, and the free
streamline according to Equations (11)–(12). Figure 2 illustrates the free streamlines plotted
for b3/b1 = 1, b2/b1 = 0.1, α = π/2 andV2/V1 = 2, 7, 12 with corresponding values
V3/V1 = 0·92, 0·65, 0·36 (curves 1–3, respectively).

3. Conclusions

The Schwarz-Christoffel formula was used for conformal mapping of one characteristic do-
main (complex potential) onto the hodograph or Zhukovskii function domain in many prob-
lems of fluid mechanics (e.g.[2], pp. 107–109, 231–239). In this note, we apply this formula
to a problem when a uniform flow in a straight parent channel splits between the narrowed
or widened continuation of the parent channel and an offtake channel such that in the offtake
channel a free (isobaric) streamline appears. Unlike [9], we consider the case when the veloc-
ity potential decreases after bifurcation from+∞ in the upstream part of the parent channel
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Figure 2. Free stream-lines forb3/b1 = 1, b2/b1 = 0.1, α = π/2 andV2/V1 = 2, 7, 12 with corresponding
valuesV3/V1 = 0·92, 0·65, 0·36 (curves 1–3, respectively).

(far from the bisection point) to−∞ both in the downstream branch of the parent channel and
in the offtake channel. Hence, we modify the solution from [9] , taking into account a cut in the
complex potential domain. This cut corresponds to the wall, which intersects the bifurcating
separatrice. The free streamline is found after solution of a nonlinear equation with respect to
one parameter of the mapping. Unlike [8] the free streamline is calculated by use of integral
representations similar to [9].
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